Multifidelity Monte Carlo estimation with adaptive low-fidelity models
نویسنده
چکیده
Multifidelity Monte Carlo (MFMC) estimation combines lowand high-fidelity models to speedup the estimation of statistics of the high-fidelity model outputs. MFMC optimally samples the lowand high-fidelity models such that the MFMC estimator has minimal mean-squared error for a given computational budget. In the setup of MFMC, the low-fidelity models are static, i.e., they are given and fixed and cannot be changed and adapted. We introduce the adaptive MFMC (AMFMC) method that splits the computational budget between adapting the low-fidelity models to improve their approximation quality and sampling the lowand high-fidelity models to reduce the mean-squared error of the estimator. Our AMFMC approach derives the quasi-optimal balance between adaptation and sampling in the sense that our approach minimizes an upper bound of the mean-squared error, instead of the error directly. We show that the quasi-optimal number of adaptations of the low-fidelity models is bounded even in the limit case that an infinite budget is available. This shows that adapting low-fidelity models in MFMC beyond a certain approximation accuracy is unnecessary and can even be wasteful. Our AMFMC approach trades-off adaptation and sampling and so avoids over-adaptation of the low-fidelity models. Besides the costs of adapting low-fidelity models, our AMFMC approach can also take into account the costs of the initial construction of the low-fidelity models (“offline costs”), which is critical if low-fidelity models are computationally expensive to build such as reduced models and data-fit surrogate models. Numerical results demonstrate that our adaptive approach can achieve orders of magnitude speedups compared to MFMC estimators with static low-fidelity models and compared to Monte Carlo estimators that use the high-fidelity model alone.
منابع مشابه
Convergence analysis of multifidelity Monte Carlo estimation
The multifidelity Monte Carlo method provides a general framework for combining cheap low-fidelity approximations of an expensive highfidelity model to accelerate the Monte Carlo estimation of statistics of the high-fidelity model output. In this work, we investigate the properties of multifidelity Monte Carlo estimation in the setting where a hierarchy of approximations can be constructed with...
متن کاملOptimal Model Management for Multifidelity Monte Carlo Estimation
This work presents an optimal model management strategy that exploits multifidelity surrogate models to accelerate the estimation of statistics of outputs of computationally expensive high-fidelity models. Existing acceleration methods typically exploit a multilevel hierarchy of surrogate models that follow a known rate of error decay and computational costs; however, a general collection of su...
متن کاملMultifidelity Uncertainty Propagation via Adaptive Surrogates in Coupled Multidisciplinary Systems
Fixed point iteration is a common strategy to handle interdisciplinary coupling within a feedback-coupled multidisciplinary analysis. For each coupled analysis, this requires a large number of disciplinary high-fidelity simulations to resolve the interactions between different disciplines. When embedded within an uncertainty analysis loop (e.g., with Monte Carlo sampling over uncertain paramete...
متن کاملMultifidelity preconditioning of the cross-entropy method for rare event simulation and failure probability estimation
Accurately estimating rare event probabilities with Monte Carlo can become costly if for each sample a computationally expensive high-fidelity model evaluation is necessary to approximate the system response. Variance reduction with importance sampling significantly reduces the number of required samples if a suitable biasing density is used. This work introduces a multifidelity approach that l...
متن کاملCombining multiple surrogate models to accelerate failure probability estimation with expensive high-fidelity models
In failure probability estimation, importance sampling constructs a biasing distribution that targets the failure event such that a small number of model evaluations is sufficient to achieve a Monte Carlo estimate of the failure probability with an acceptable accuracy; however, the construction of the biasing distribution often requires a large number of model evaluations, which can become comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017